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LETTER TO THE EDITOR 

Triangular antiferromagnet as a biaxial quantum fluid 
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t Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK 
$ Serin Physics Laboratory, Rutgers University, PO Box 849, Piscataway, NJ 08854, 
USA 

Received 21 August 1990 

Abstract. We apply a Schwinger boson scheme for quantum helimagnets to the two-dimen- 
sional triangular lattice Heisenberg antiferromagnet. Fluctuations are shown to lead to 
biaxial behaviour and the generation of an additional longitudinal Goldstone mode that 
appears as a pole in the longitudinal magnetic susceptibility. 

The Heisenberg quantum antiferromagnet on a two-dimensional triangular lattice is 
the prototypical example of a frustrated antiferromagnet. Interest in this problem 
has been traditionally divided between the extreme quantum spin-i and the large-S 
classical limits. At both extremes, spin fluctuations are endemic and profoundly mod- 
ify the properties of the magnet. Classically, short wavelength thermal fluctuations 
drive a finite temperature topological phase transition associated with the unbinding 
of vortices in the (SO(3)) order parameter field [l]. In the extreme quantum limit 
of the spin-i  model, there has been a long-standing interest in the Anderson and 
Fazekas [2,3] hypothesis, that short wavelength quantum fluctuations might destroy 
the ordered moment forming a resonating valence bond state with no ordered mo- 
ment [2,4]. Interest in the quantum limit has been recently revived by the possibility 
of a link with high temperature superconductivity [2-91. 

Despite interest in these extreme limits of the triangular lattice Heisenberg model, 
there has been comparatively little effort to understand the properties of this model 
at  intermediate S. EPR studies on quasi-two-dimensional triangular spin systems do 
indicate the presence of spin vortices at  finite temperatures, suggesting that the order 
parameter is intrinsically biaxial in the quantum spin system [lo]. In this letter, we 
discuss this development of biaxial order in the quantum triangular lattice model, and 
examine its consequences for the low-energy properties. 

The classical triangular lattice antiferromagnet is a commensurate helimagnet , 
with three magnetic sublattices lying at  120' to each other in a plane. In the ground 
state, classical Heisenberg antiferromagnets are locally uniaxial, the order parameter 
being defined by a vector on the unit sphere (S2), so that the longitudinal magnetic 
susceptibility is zero and in general there are two transverse Goldstone modes with dif- 
ferent velocities, corresponding to  slow rotations of the spins about axes perpendicular 
to  the local magnetization. 

In non-collinear helimagnets, zero-point fluctuations modify the properties quali- 
tatively at finite spin S. Spin fluctuations in a non-collinear magnet are anisotropic 
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about the local magnetization axis: the axial symmetry of the order parameter is 
thereby broken, driving it 'biaxial'. For helimagnets, we may consider the fluctuation 
component of the 'twist' between neighbouring spins in the triangular lattice spin 
system, which is written 

qj = (Sj x Si) - (Sj) x (Sj) 

Quantum zero-point spin fluctuations generate a ground-state expectation value for 
this vector which lies normal to the plane of magnetization. Low-energy excitations 
about the ground state will distort the overall spin configuration, maintaining the 
orthogonality of the spin plane and the axis of the zero-point fluctuations. In this 
way, the character of the order parameter changes from S2 to P3 (SO(3)), where it is 
characterized by two orthogonal unit vectors. 

There are several immediate qualitative consequences of the change in character of 
the order parameter. First, the long-wavelength longitudinal magnetic susceptibility 
becomes finite. Second, an additional 'longitudinal' Goldstone mode must appear [ll], 
corresponding to  slow rotations of the order parameter about the local magnetization 
axis. This mode will appear as a pole in the longitudinal magnetic susceptibility 
around q = 0. Finally, the topological properties of the order parameter are changed: 
for an SO(3) order parameter, free vortices with spin become topologically stable, 
whilst 'hedgehog' point-defect configurations that occur for S2 order are no longer 
stable. 

Application of spin-wave theory to the triangular magnet encounters divergences 
associated with this development of biaxial order. For a general helimagnet, a uniform 
field applied in the plane of the spins produces changes in the magnitudes of the local 
ordered moments, resulting in a longitudinal component to the uniform susceptibility. 
In spin-wave theory, to leading order in 1/S, the uniform longitudinal susceptibility 
is determined by the density fluctuations of the Holstein-Primakoff bosons, at the 
magnetic wavevector 

where wq are magnon frequencies and uq and vq are the Bogoliubov coefficients in the 
expansion of the magnon creation operators [12,13]. For the triangular antiferromag- 
net, Goldstone modes in the spin-wave spectrum around q = Q and q = 2Q lead to 
a power-law infrared divergence xI - l / A ,  where A is the momentum cutoff around 
q = Q. A related divergence occurs in the the wavefunction renormalization constant 
of the magnons. These divergences are a symptom of the biaxial behaviour: to reg- 
ularize them, a new energy scale associated with the deformation of the fluctuation 
twist axis relative to the magnetization axis must be introduced into the theory. 

One of the more expedient methods that has recently been applied to  the problem 
of low dimensional antiferromagnets, is the Schwinger boson technique, developed by 
Arovas and Auerbach [14], which describes strongly fluctuating magnets in terms of 
an incompressible superfluid of spins, where a classical spin condensate is surrounded 
by a normal fluid of spin fluctuations. A related method has been developed by 
Takahashi [15,16]. Chandra, Coleman and Larkin [17] (hereafter referred to as CCL) 
have extended this approach to  encompass biaxial behaviour through the introduction 
of a triplet spin pairing in the fluid of spin fluctuations. In this letter, we study the 
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finite, but large-S triangular lattice Heisenberg model by using the quantum fluids 
approach. 

Following CCL we imagine arbitrarily twisting the spin reference frame introducing 
a ‘fictitious’ twist vector potential A,,  (Z = 1,2) into the Heisenberg model 

H = 5 1 J(Ri j )S i  exp ( - ~ A l d R 1 x ) S j - ~ B j . S j  
i j  j 

(3) 

A uniform twist vector potential A, = Q,& is equivalent to a uniformly twisted spin 
coordinate axis or alternatively, twisted boundary conditions, with a twist of angle 
(QzLz,QyLy) about the 6 axis in the x and y directions. The stiffnesses of the 
broken symmetry ground state are found by computing the second derivatives of the 
free energy with respect to  the twist, in a manner reminiscent of the Abrikosov-Gorkov 
computation of superfluid density in a superconductor. 

= ! 2 * +  ffij be the Bravais lattice vectors of the triangular 
lattice, then in a reciprocal lattice basis the Fourier transform of J(R) is 

Let 2 = 2* and 

Jq = 25 [cz + cy + C,-J (4) 

where cI = cosq, (I = 1,2) and c,-, = cos(q, - q,). Following CCL, we transform to 
a twisted reference frame where the configuration of spins S g  is locally ferromagnetic, 
so (Sf x S;) = 0. The transformed Hamiltonian is formally unchanged, but the 
spin vector potential is now A, = Q,;. Next we employ the Schwinger boson spin 
representation ( Si = ~ b t u a u , , t b i , t ,  n b ( i )  = 2S), and decouple the twisted Heisenberg 
model entirely in terms of even parity Cooper and particle-hole pairs. At a mean field 
level, this is equivalent to discussing a BCS pairing Hamiltonian 

where Bd = btqu b t -q-u  and Db = btq,,bqa are triplet Cooper and particle-hole pair- 
ing fields for the Schwinger bosons. In triangular antiferromagnets, the high degree of 
symmetry in the lattice preferentially selects a uniform twist with Q = f g ~ ( 1 , 2 ) ,  pro- 
ducing a twist of 120° between neighbouring spins. In this case the pairing potentials 
simplify and become 

(J&!,J&~) = 
A mean-field decoupling of this Hamiltonian then yields 

HInf = C I h q b t q a b q ,  - P q b t q + L q l  + HCI) 
Q 

(7) 

where the mean field parameters are self-consistently determined through the equa- 
tions 
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Here J, E J d2q/(2r)', and 

Paq, 217,) = [coth(Pwq/2)/wql(hq, A,). (9) 

The mean field spin quanta have energy wq = ( h i  - Ai)"'. The corresponding 
ground-state wavefunction is an RVB wavefunction of triplet pairs, which when written 
in the untwisted reference frame contains an admixture of both singlet and triplet 
valence bonds 

Here f, = ",/U, is a symmetric function of q, with 2ui = [h,/w, + 11 and 2uqvq = 
A,/w,. PZs projects the component of the wavefunction with 2s spin quanta per site. 
Equation (10) generalizes the Liang-Doucot-Anderson wavefunction to  the triangular 
lattice [MI. 

In the large-S limit at zero temperature the bosons condense a t  q = 0, so rrq - 
q, - S'6, giving the classical ordered ground state with magnetization S'. In this 
limit, the equations for h, and A, are saturated by the contribution from the spin 
condensate, so 

S' J ,  
( hq -k A, = s* ( J$, 3; ) = ( 1 , 3  ) 4, 

The constraint field is set by the condition that q = 0 is a Goldstone mode, which 
then yields X = S'JQ = - 3 S ' J ,  so that 

@ * I 2  w2 = - [ 6 J  - J,] [ J ,  + 351 
q 2  

which is the large-S spin-wave spectrum. A first approximation to  the critical spin 
S, N S - S* is obtained by substituting the large-S values of h, and A, into the 
constraint equation (8), giving S, N 0.258 in agreement with spin-wave theory results 
[19], consistent with an ordered ground state for any spin. (Iteration of the mean field 
equations to  full self-consistency only includes some of the higher order corrections in 
1/S, but also gives S, < i). At low temperatures solution of the constraint equation 
gives an accumulation of bosons around q = 0, a small gap A, and a coherence length 
(, given by 

2 T  to = co/Ao = - exp 2 r J S 2 / T  
3 J S  

where c, is the spin-wave velocity. 
The fluctuation corrections to  the spin-wave spectrum are calculated to  leading or- 

der in 1/S by iteration of the pairing equations (8), adjusting X to  satisfy the constraint 
equation. The  most striking change in the spin-wave spectrum is the development of 
a gap 

2 ( 6 J -  J , )  'I2 
('Q)' = (:>"' l ( - J J q )  [ ( J ,  + 3 J )  ] 
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in the excitation spectrum at q = kQ. This gap is a signal of biaxial character, and 
can be identified as the characteristic frequency of the breathing mode in which the 
fluctuation component of the twist l a n d  (S(z)) x (S(y)) rotate in opposite directions. 
At low temperatures AQ - 1.50J&, whilst at high temperatures AQ - m. The 
crossover from a- to  @-dependence is typical of this kind of quantum exchange 
mode, where the restoring force is derived from zero-point quantum fluctuations at low 
temperatures, and from the entropy of thermal fluctuations at  high temperatures [20]. 
The healing length tQ = AQ/cQ for these out-of-phase fluctuations is only a few lat- 
tice spacings (figure 1). In the l a rge3  limit the Goldstone mode associated with slow 
rotations of the plane of magnetization appears as two gapless modes in the magnon 
spectrum at q = fQ. Once fluctuations are included, the ordered moment magnetiza- 
tion axis and the anisotropic fluid of spin excitations become locked together, so this 
Goldstone mode at  finite S becomes a collective mode associated with slow rotations 
of the triplet pairing field. In spin-wave theory, this phenomenon is manifested by the 
development of spin-wave bound states [21, 221. A calculation of the residue Zq of 
this Goldstone mode in the one magnon channel reveals that it vanishes at  finite S. 
In the spin wave language, the long-wavelength excitations about q = Q are entirely 
composed of bound-magnon pairs [13]. 

0.1 I I I I I I 
1.2 0.0 0.4 J S Z I T  0.8 

Figure 1. Coherence lengths (0 and <Q against 
J S 2 / T  for S = 3. 

0.0 
0 1 2 3 

TI J S 2  

Figure 2. Uniform susceptibility against T / J S 2  
for s = 3. 

The spin susceptibility may be calculated from the propagators of the mean field 
spin quanta, as is described by CCL. We find 

xB = 1 x c o s e c h  z W q  - 
2T 

P 

for static the susceptibility parallel to  the twist axis and 

for the average susceptibility xI = $(xl + xz) perpendicular to the twist axis.Here 
f E q k Q / 2 ,  and .(W) is the Bose function. At T = 0 and large SI this reduces to the 
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1: Longitudinal 2: Thmverse 3: Tramverse 

0.017 2 1 1 1  - g + O(-) + O($ JJS 8 X 

7 0.080JS 7 + O(S) 7 + O(S)  
3 J 9  3 J S z  

C 2.17J53/4 l.&IJS 2.60JS 
- 

isotropic classical susceptibility. Unlike a uniaxial magnet, the fluid of spin fluctuations 
is itself anisotropic, and there is a fluctuation corrections 6% to this susceptibility at  
finite S associated with the moment of of inertia of this fluid. These quantities are 
calculated from appropriate RPA polarizabilities of the spin quanta, and we find that 
6x3 = 0, whilst 6xl # 0, confirming that the spin fluctuations are axially symmetric 
about the normal to  the spin plane. At finite temperatures only the average of the 
susceptibilities is observed due to  the lack of long range order. A numerical calculation 
of x(T) for S = f is shown in figure 2. 

Next we consider the long-wavelength behaviour of the triangular antiferromagnet. 
At finite temperatures, the co-ordinate system of the twisted reference frame experi- 
ences slow distortions which we may study by deriving the long wavelength action at 
low temperatures. The magnetization 8 and twist & define an SO(3) order parameter 
with orthogonal axes (6,,6,,6,) = (8, & x 8,&). In general, these vectors precess in 
space according to  VI&, = (wI + Q16,) x 6, where the w I  = 0 in the ground state. 
Quite generally, we may write the long-wavelength action . .  

As expected, in the large-S limit the the longitudinal susceptibility and stiffness 
are zero. We find x3 = $x2, corresponding to an isotropic magnetic susceptibility 
in the untwisted reference frame, as obtained in previous studies [7]. For finite S 
the longitudinal stiffness is finite, and the system develops a longitudinal Goldstone 
mode with velocity c(l) = 2.17 JS3I4. The non-analytic dependence of the velocity 
on S reflects its fluctuation origins. In the vicinity of the magnetic Bragg peaks, 
neutron scattering will now observe three distinct poles in the scattering intensity, 
given approximately by 
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Here the form factor ft = 1 for the transverse modes ( A  = 2,3), but is fi = (r3q)’ for 
the longitudinal mode since the longitudinal magnetization depends on derivatives of 
the twist ( M I  N k 1 7  x ~ 9 ~ 7 ) .  The presence of the additional pole in the longitudinal 
spin susceptibility provides an unambiguous experimental test for the development of 
biaxial order. 

Let us briefly consider the finite-temperature behaviour of the quantum triangular 
magnet, and in particular its relationship to the topological phase transition. In 
addition to  smooth variations in the spin reference frame and the associated vector 
potential A,, the biaxial nature of the magnet permits the introduction of stable ‘2, 
vortices’ into the order parameter field [1,23,24]. In the locally ferromagnetic spin 
reference frame, the phase integral of the spin vector potential around a 2, vortex 
precesses through 2n 

A, dR, = 2nG. (18) f 
These vortices carry a net moment S, and can be loosely regarded as unbound spins. 
Rotational invariance enables two 2, vortices to be adiabatically deformed into a 
singlet, thereby annihilating one-another. The free energy of an isolated vortex is 
F - ( J S 2  - 2T)ln[<(T)/a] which may be neglected until T - J S 2 .  Fortunately, this 
is also the temperature where AQ N T and spin waves unbind, destroying the biaxial 
order, so our assumption of a smoothly varying twist vector potential is consistent 
with the topological picture of SO(3) order. 

Finally, we should like to discuss the possibilities of ‘disordered’ magnetic ground 
states on a triangular lattice. In the case of a square lattice Heisenberg model, in- 
creasing the fluctuations is thought to cause a topological transition into a dimer 
state, via constructive interference between ‘hedgehog’ instanton configurations of the 
order parameter [25,26]. For spiral magnets, there are no stable point defects in 2 + 1 
dimensions, (n2(S0(3)) = 0) and it would seem that the analogous phase transition 
into a dimer is ruled out. An interesting alternative is the formation of a ‘spin ne- 
matic’ [27], where the magnetisation drops to zero, but the twist axis, the associated 
stiffness and topological character are sustained by the continued condensation of 
magnon pairs. One way to suppress the magnetization is to add next-nearest neigh- 
bour interactions. On the 2-dimensional square lattice Heisenberg antiferromagnet, 
once J , /J ,  - 4, the Goldstone mode spectrum becomes quadratic and the magneti- 
sation drops to zero [28,29]. In the triangular lattice this approach fails, for the 
softening of the Goldstone modes and a divergence in the magnetic fluctuations is 
pre-empted by a first order phase transition into a collinear magnetic state [30,31]. 
A more successful approach is to remove one quarter of the sites from the lattice to 
form a tessellated array of hexagons and triangles called the Kagome lattice. This 
model has no classically ordered moment, but may nevertheless display a topological 
SO(3) phase transition. The study of this system is currently of great experimental 
and theoretical interest [13,32,33]. 

In conclusion, we have shown how quantum fluids treatment of the triangular 
lattice antiferromagnet helps to elucidate the fluctuation driven biaxial character of the 
quantum triangular magnet. In particular, this leads to the development of quantum 
exchange gaps, which we have interpreted in terms of the development of a biaxial 
order parameter, and a longitudinal Goldstone mode. 
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